Prespecified Task Resource
The Latch SDK currently supports a set of prespecified task resource requests
represented as decorators:
small_task: 2 cpus, 4 gigs of memory, 0 gpus
medium_task: 32 cpus, 128 gigs of memory, 0 gpus
large_task: 96 cpus, 192 gig sof memory, 0 gpus
small_gpu_task: 8 cpus, 32 gigs of memory, 1 gpu (24 gigs of VRAM, 9,216 cuda cores)
large_gpu_task: 31 cpus, 120 gigs of memory, 1 gpu (24 gigs of VRAM, 9,216 cuda cores)
v100_x1_task: 16 cpus, 64 gigs of memory, 1 V100 gpu (16 gigs of VRAM, 5,120 cuda cores)
v100_x4_task: 64 cpus, 256 gigs of memory, 4 V100 gpus (64 gigs of VRAM, 20,480 cuda cores)
v100_x8_task: 128 cpus, 512 gigs of memory, 8 V100 gpus (128 gigs of VRAM, 40,960 cuda cores)
g6e_xlarge_task: 4 cpus, 32 gigs of memory, 1 L40s gpu
g6e_2xlarge_task: 8 cpus, 64 gigs of memory, 1 L40s gpu
g6e_4xlarge_task: 16 cpus, 128 gigs of memory, 1 L40s gpu
g6e_8xlarge_task: 32 cpus, 256 gigs of memory, 1 L40s gpu
g6e_12xlarge_task: 48 cpus, 384 gigs of memory, 1 L40s gpu
g6e_16xlarge_task: 64 cpus, 512 gigs of memory, 1 L40s gpu
g6e_24xlarge_task: 96 cpus, 768 gigs of memory, 4 L40s gpus
We use the tasks as follows:
from latch.resources.tasks import small_task, large_gpu_task, v100_x1_task, g6e_xlarge_task
@small_task
def my_task(
...
):
...
@large_gpu_task
def inference(
...
):
...
Custom Task Resource
You can also arbitrarily specify task resources using @custom_task:
from latch import custom_task
@custom_task(cpu, memory) # cpu: int, memory: int
def my_task(
...
):
...
THe maximum available resources are 126 cpus, 975 GiB memory, and 4949 GiB ephemeral storage.
Dynamic Task Resource
You can dynamically define task resources based on the tasks’ input
parameters by passing functions as arguments for the custom_task decorator.
The provided functions will execute at runtime, and the task will launch
with the resulting resource values:
...
from latch import custom_task
from latch.types.file import LatchFile
def allocate_cpu(files: List[LatchFile], **kwargs) -> int: # number of cores to allocate
return min(8, len(files))
def allocate_storage(files: List[LatchFile], **kwargs) -> int: # GiBs of storage to allocate
return sum([1.5 * file.size() for file in files]) // 1024**3
@custom_task(cpu=allocate_cpu, memory=8, storage_gib=allocate_storage)
def my_task(files: List[LatchFile], count: int):
...
In the provided example, the allocate_cpu function is designed to process the
input parameters files. Upon execution, the function returns an integer representing
the total number of CPU cores that should be allocated to the task based on the input
file size.
The parameters passed to the resource functions at runtime are the same as
those passed to the task function. Therefore, the resource functions must only
accept parameters that exist in the task function signature. See how the
my_task function and the allocate_cpu function both accept a parameter
named files of type List[LatchFile].